Abstract
Radial Basis Function (RBF) has been used in surface reconstruction methods to interpolate or approximate scattered data points, which involves solving a large linear system. The linear systems for determining coefficients of RBF may be ill-conditioned when processing a large point set, which leads to unstable numerical results. We introduce a quasi-interpolation framework based on compactly supported RBF to solve this problem. In this framework, implicit surfaces can be reconstructed without solving a large linear system. With the help of an adaptive space partitioning technique, our approach is robust and can successfully reconstruct surfaces on non-uniform and noisy point sets. Moreover, as the computation of quasi-interpolation is localized, it can be easily parallelized on multi-core CPUs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.