Abstract

The efficient use of visible light is necessary to take advantage of photocatalytic processes in both indoor and outdoor circumstances. Precisely manipulating the in situ growth method of heterojunctions is an effective way to promote photogenerated charge separation. Herein, the SrFeO3@B-rGO catalyst was prepared by an in situ growth method. At a loading of 10 wt % B-rGO, the nanocomposites revealed an excellent morphology and thermal, optical, electrochemical, and mechanical properties. X-ray diffraction analysis revealed the cubic spinel structure and a space group of Pm̅3m for SrFeO3. High-resolution scanning electron microscopy and high-resolution transmission electron microscopy show the core-shell formation between SrFeO3 and B-rGO. Furthermore, density functional theory of SrFeO3 was performed to find its band structure and density of states. The SrFeO3@B-rGO nanocomposite shows the degradation rate of tetracycline (TC) reaching 92% in 75 min and the highest rate constant of 0.0211 min-1. To improve the catalytic removal rate of antibiotics, the efficiency of e- and h + separation must be improved, as well as the generation of additional radicals. Radical trapping tests and the electron paramagnetic resonance method indicated that the combination of Fe2+ and Fe3+ in SrFeO3 effectively separated e- and h+ while also promoting the development of the superoxide anion (•O2-) to accelerate TC degradation. The entire TC degradation pathway using high-performance liquid chromatography and its mechanism were discussed. As a whole, this study delineates that photocatalysis is a viable strategy for the treatment of environmental antibiotic wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call