Abstract
Modules over a quasialgebra (here, by quasialgebra we mean a left H-module algebra, where H is a quasi-Hopf algebra), as defined by Albuquerque and Majid, coincide with modules over a certain associative algebra, a quasi-Hopf smash product. As a consequence of this, we get that the category of modules over the octonions is isomorphic to the category of modules over the algebra of 8×8 real matrices. We provide a new approach to the endomorphism quasialgebra associated to a left H-module, which in the finite dimensional case yields the same results as the one of Albuquerque and Majid. We discuss possible definitions as endomorphism quasialgebras for Heisenberg doubles of a finite dimensional quasi-Hopf algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.