Abstract

A quasi-hamiltonian path in a semicomplete multipartite digraph D is a path which visits each maximal independent set (also called a partite set) of D at least once. This is a generalization of a hamiltonian path in a tournament.In this paper we investigate the complexity of finding a quasi-hamiltonian path, in a given semicomplete multipartite digraph, from a prescribed vertex x to a prescribed vertex y as well as the complexity of finding a quasi-hamiltonian path whose end vertices belong to a given set of two vertices {x,y}. While both of these problems are polynomially solvable for semicomplete digraphs (here all maximal independent sets have size one), we prove that the first problem is NP-complete and describe a polynomial algorithm for the latter problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.