Abstract

AbstractWe examine the form, properties, stability and evolution of doubly-connected (two-vortex) relative equilibria in the single-layer $f$-plane quasi-geostrophic shallow-water model of geophysical fluid dynamics. Three parameters completely describe families of equilibria in this system: the ratio $\gamma = L/ {L}_{D} $ between the horizontal size of the vortices and the Rossby deformation length; the area ratio $\alpha $ of the smaller to the larger vortex; and the minimum distance $\delta $ between the two vortices. We vary $0\lt \gamma \leq 10$ and $0. 1\leq \alpha \leq 1. 0$, determining the boundary of stability $\delta = {\delta }_{c} (\gamma , \alpha )$. We also examine the nonlinear development of the instabilities and the transitions to other near-equilibrium configurations. Two modes of instability occur when $\delta \lt {\delta }_{c} $: a small-$\gamma $ asymmetric (wave 3) mode, which is absent for $\alpha \gtrsim 0. 6$; and a large-$\gamma $ mode. In general, major structural changes take place during the nonlinear evolution of the vortices, which near ${\delta }_{c} $ may be classified as follows: (i) vacillations about equilibrium for $\gamma \gtrsim 2. 5$; (ii) partial straining out, associated with the small-$\gamma $ mode, where either one or both of the vortices get smaller for $\gamma \lesssim 2. 5$ and $\alpha \lesssim 0. 6$; (iii) partial merger, occurring at the transition region between the two modes of instability, where one of the vortices gets bigger, and (iv) complete merger, associated with the large-$\gamma $ mode. We also find that although conservative inviscid transitions to equilibria with the same energy, angular momentum and circulation are possible, they are not the preferred evolutionary path.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call