Abstract
ABSTRACT The chemistry of H2O, CO, and other small molecular species in an isolated pre-stellar core, L1544, has been assessed in the context of a comprehensive gas-grain chemical model, coupled to an empirically constrained physical/dynamical model. Our main findings are (i) that the chemical network remains in near equilibrium as the core evolves towards star formation and the molecular abundances change in response to the evolving physical conditions. The gas-phase abundances at any time can be calculated accurately with equilibrium chemistry, and the concept of chemical clocks is meaningless in molecular clouds with similar conditions and dynamical time-scales, and (ii) A comparison of the results of complex and simple chemical networks indicates that the abundances of the dominant oxygen and carbon species, H2O, CO, C, and C+ are reasonably approximated by simple networks. In chemical equilibrium, the time-dependent differential terms vanish, and a simple network reduces to a few algebraic equations. This allows rapid calculation of the abundances most responsible for spectral line radiative cooling in molecular clouds with long dynamical time-scales. The dust ice mantles are highly structured and the ice layers retain a memory of the gas-phase abundances at the time of their deposition. A complex (gas-phase and gas-grain) chemical structure therefore exists, with cosmic-ray induced processes dominating in the inner regions. The inferred H2O abundance profiles for L1544 require that the outer parts of the core and also any medium exterior to the core are essentially transparent to the interstellar radiation field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.