Abstract

Atomic force microscopy (AFM) was used to measure the disjoining pressures of perfluoropolyether lubricant films (0.8-4.3 nm of Fomblin Z03) on both silicon wafers and hard drive disks coated with a diamondlike carbon overcoat. Differences in the disjoining pressure between the two systems were expected to be due to variations in the strength of van der Waals interactions. Lifshitz theory calculations suggest that this substrate switch will lead to relatively small changes in disjoining pressure as compared to the more pronounced effects reported due to changes in lubricant chemistry. We demonstrate the sensitivity of our AFM method by distinguishing between these similar systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.