Abstract

This study presents a framework for detecting mechanical damage in pipelines, focusing on generating simulated data and sampling to emulate distributed acoustic sensing (DAS) system responses. The workflow transforms simulated ultrasonic guided wave (UGW) responses into DAS or quasi-DAS system responses to create a physically robust dataset for pipeline event classification, including welds, clips, and corrosion defects. This investigation examines the effects of sensing systems and noise on classification performance, emphasizing the importance of selecting the appropriate sensing system for a specific application. The framework shows the robustness of different sensor number deployments to experimentally relevant noise levels, demonstrating its applicability in real-world scenarios where noise is present. Overall, this study contributes to the development of a more reliable and effective method for detecting mechanical damage to pipelines by emphasizing the generation and utilization of simulated DAS system responses for pipeline classification efforts. The results on the effects of sensing systems and noise on classification performance further enhance the robustness and reliability of the framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.