Abstract

Due to the cuspidal ridges of adiabatic potential energy surfaces (PESs) and singularities of nonadiabatic couplings (NACs), obtaining an analytical expression for the adiabatic Hamiltonian is difficult. Thereby, nonadiabatic dynamics simulations are often carried out on-the-fly, which is time-consuming. This motivates us to construct quasi-diabatic representations, which have smooth PESs and diabatic couplings. In this study, we propose a new quasi-diabatization method based on minimizing derivative couplings (MDC) in a limited configuration space. The boundary conditions are first considered and finally released to obtain the adiabatic-to-diabatic rotation angles and transformation matrices. As demonstrated in representative one- and two-dimensional models and the widely studied linear H3 molecule, MDC performs significantly better than the direct integration quasi-diabatization approach. In particular, accurate diabatic potential energy matrices have been successfully obtained even when the NACs of all configurations in the considered space are nonnegligible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.