Abstract

In this paper, we provide criteria for the reversibility and conjugate-reversibility of 1-generator quasi-cyclic codes. The Chinese remainder theorem is used to provide a characterization for generalized quasi-cyclic codes to be Galois linear complementary-dual and Galois self-dual. Using the approach proposed by Guneri and Ozbudak (IEEE Trans Inf Theory 59(2):979–985, 2013), a new concatenated structure for quasi-cyclic codes is given. We show that Galois linear complementary-dual quasi-cyclic codes are asymptotically good over some finite fields. In addition, DNA codes are given which have more codewords than previously known codes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.