Abstract
We introduce quasi-convex subsets in Alexandrov spaces with lower curvature bound, which include not only all closed convex subsets without boundary but also all extremal subsets. Moreover, we explore several essential properties of such kind of subsets including a generalized Liberman theorem. It turns out that the quasi-convex subset is a nice and fundamental concept to illustrate the similarities and differences between Riemannian manifolds and Alexandrov spaces with lower curvature bound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.