Abstract
Quasi-classical trajectory (QCT) calculations are reported for the H+LiH (v = 0–2, j = 0) Li+H2 reaction on a new ground electronic state global potential energy surface (PES) of the LiH2 system. Reaction probability and integral cross sections (ICSs) are calculated for collision energies in the range of 0 eV–0.5 eV. Reasonable agreement is found in the comparison between present results and previous available theoretical results. We carried out statistical analyses with all the trajectories and found two main distinct reaction mechanisms in the collision process, in which the stripping mechanism (i.e., without roaming process) is dominated over the collision energy range. The polarization dependent differential cross sections (PDDCSs) indicate that forward scattering dominates the reaction due to the dominated mechanism. Furthermore, the reactant vibration leads to a reduction of the reactivity because of the barrierless and attractive features of PES and mass combination of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.