Abstract

Based on the quasi-classical version of the canonical Caldirola–Kanai quantization, non-relativistic cyclotron resonance in a dissipative medium is studied. The corresponding particle propagator in the coordinate representation is found. It is shown that the combined effect of dissipation and a constant magnetic field reduces to the suppression of the quantum properties of a charged particle. In turn, a time-varying electric field that causes cyclotron resonance does not exhibit similar properties and does not affect the uncertainties of the particle coordinates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.