Abstract

Thermal anisotropy/isotropy is one of the fundamental characteristics of the thermal properties of a material, playing a significant role in the high-performance thermal management in micro-/nanoelectronics. It has been well documented in the literature that the symmetry of geometric structures governs the anisotropy/isotropy of thermal transport. However, the fundamental correlation and the underlying mechanism remain unclear. In this paper, using a new two-dimensional (2D) van der Waals (vdW) phosphorus nanotube array as a case study, we show that the lattice thermal conductivity can be abnormally almost isotropic although the geometric structure presents remarkable anisotropy, which contradicts the previous consensus. The key factor for the abnormal isotropic thermal conductivity is mainly the essentially analogous group velocities along the intratube and intertube directions. Compared with a carbon-nanotube array, a traditional vdW system, a microscopic picture is established to underpin the underlying mechanism. The quasi-bond (non-covalent bonding, but far stronger than the vdW interatomic interaction) between the phosphorus nanotubes is found to be responsible for such diverse isotropic transport phenomena. The findings in this paper are expected to deepen our understanding of the anisotropy/isotropy thermal transport of materials and are also helpful for future thermal management technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.