Abstract

If the form of the distribution of data is unknown, the Bayesian method fails in the parametric inference because there is no posterior distribution of the parameter. In this paper, a theoretical framework of Bayesian likelihood is introduced via the Hilbert space method, which is free of the distributions of data and the parameter. The posterior distribution and posterior score function based on given inner products are defined and, consequently, the quasi posterior distribution and quasi posterior score function are derived, respectively, as the projections of the posterior distribution and posterior score function onto the space spanned by given estimating functions. In the space spanned by data, particularly, an explicit representation for the quasi posterior score function is obtained, which can be derived as a projection of the true posterior score function onto this space. The methods of constructing conservative quasi posterior score and quasi posterior log-likelihood are proposed. Some examples are given to illustrate the theoretical results. As an application, the quasi posterior distribution functions are used to select variables for generalized linear models. It is proved that, for linear models, the variable selections via quasi posterior distribution functions are equivalent to the variable selections via the penalized residual sum of squares or regression sum of squares.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.