Abstract
The generalized Bayes’ rule (GBR) can be used to conduct ‘quasi-Bayesian’ analyses when prior beliefs are represented by imprecise probability models. We describe a procedure for deriving coherent imprecise probability models when the event space consists of a finite set of mutually exclusive and exhaustive events. The procedure is based on Walley’s theory of upper and lower prevision and employs simple linear programming models. We then describe how these models can be updated using Cozman’s linear programming formulation of the GBR. Examples are provided to demonstrate how the GBR can be applied in practice. These examples also illustrate the effects of prior imprecision and prior-data conflict on the precision of the posterior probability distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.