Abstract
We introduce new quasi-Banach modulation spaces on locally compact abelian groups which coincide with the classical ones in the Banach setting and prove their main properties. Then, we study Gabor frames on quasi-lattices, significantly extending the original theory introduced by Gröchenig and Strohmer. These issues are the key tools in showing boundedness results for Kohn–Nirenberg and localization operators on modulation spaces and studying their eigenfunctions’ properties. In particular, the results in the Euclidean space are recaptured.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.