Abstract

In this paper, a new switching mechanism is proposed based on the state of dynamic tracking error so that more information will be provided –not only the error but also a one up to pth differential error will be available as the switching variable. The switching index is based on the Lyapunov stability theory. Thus the switching mechanism can work more effectively and efficiently. A simplified quasi‐ARX neural‐network (QARXNN) model presented by a state‐dependent parameter estimation (SDPE) is used to derive the controller formulation to deal with its computational complexity. The switching works inside the model by utilizing the linear and nonlinear parts of an SDPE. First, a QARXNN is used as an estimator to estimate an SDPE. Second, by using SDPE, the state of dynamic tracking error is calculated to derive the switching index. Additionally, the switching formula can use an SDPE as the switching variable more easily. Finally, numerical simulations reveal that the proposed control gives satisfactory tracking and disturbance‐rejection performances. Experimental results demonstrate its effectiveness. © 2015 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.