Abstract

In supercoiled forms of flagellar filaments, which are thought to be produced by combinations of two distinct subunit lattices, the lattices are elastically deformed in 11 different ways, depending on their azimuthal positions on the circumference of a tube with 11 protofilaments. Those two interactions are nonequivalent as opposed to quasiequivalent ones in elastically deformed lattices of otherwise identical interactions. The term nonequivalence is defined to represent different bonding interactions, and quasiequivalent is used to describe deformed but conserved bonding interactions. By using two distinct lattices that were accurately determined by x-ray fiber diffraction, 10 possible supercoiled forms of flagellar filaments were simulated, based on a bistable-subunit packing model. Comparison to the observed forms showed good agreement, indicating that the model and determined lattice parameters effectively represent realistic features of the structure. The simulated quasiequivalent lattices have been compared to the two nonequivalent lattices, revealing an interesting feature: the maximum deviation in the intersubunit distance by elastic deformation is almost three-quarters of the difference between the two distinct lattices, demonstrating a balanced coexistence of a well-defined conformational distinction and extensive adaptability in the molecular structure of flagellin and its packing interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.