Abstract
Uniqueness of solutions of the Cauchy problem of a parabolic equation, and the related question of analyticity with respect to time, depend on global properties of the solution. We demonstrate that if the growth of the initial function (and, if relevant, of the inhomogeneous part and its derivatives) is not too great, solutions of non-stationary parabolic equations whose coefficients belong to quasi-analytic classes are quasi-analytic with respect to all variables and hence are unique. This study is motivated by the problem of endogenous completeness in continuous-time financial markets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.