Abstract

The exploration of magnetic resonance imaging (MRI) agents possessing excellent performances and high biosafety is of great importance for both fundamental science research and biomedical applications. In this study, we present that monodisperse Fe2O3 supraparticles (SPs) can act as T1-weighted MRI agents, which not only possess a distinct off-on MRI switch in the tumor microenvironment but also are readily excreted from living bodies due to its quasi-amorphous structure and hierarchical topology design. First, the Fe2O3 SPs have a surface-to-volume ratio obviously smaller than that of their building blocks by means of self-assembly processes, which, on the one hand, causes a rather low r1 relaxivity (0.19 mM-1 s-1) and, on the other hand, can effectively prevent their aggregation after intravenous injection. Second, the Fe2O3 SPs have a dramatic disassembly/degradation-induced active T1-weighted signal readout (more than 6 times the r1 value enhancement and about 20 times the r2/r1 ratio decrease) in the tumor microenvironment, resulting in a high signal-to-noise ratio for imaging performances. Therefore, they possess excellent in vivo imaging capacity, even with a tumor size as small as 5 mm3. Third, the disassembled/decomposed behaviors of the Fe2O3 SPs facilitate their timely clearance/excretion from living bodies. In particular, they exhibit distinct renal clearance behavior without any kidney damage with the right dosage. Fourth, the favorable biodegradability of the as-prepared Fe2O3 SPs can further relieve the concerns about the unclear biological effects, particularly on nanomaterials, in general.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.