Abstract

We present a new high-efficiency divided chirp-pulse amplification (DCPA) system based on an actively controlled quasi-all-fiber structure. As a proof-of-principle experiment, a two-channel amplification system composed of single-mode ytterbium-doped fiber is constructed. The experimental results show that the degree of linear polarization of ∼93% is maintained after recombination and the system efficiency is up to ∼95%. In addition, the beam quality ( ${M}^{2} $ factor) is around 1.2. Moreover, the system can operate stably for a long time without performance degradation. Compared with the traditional spatial DCPA, this system exhibits some advantages, such as improved spatial adjustment, high stability, compact size, and low cost. It is demonstrated that this work paves the way to design a quasi-all-fiber high-performance pulsed laser system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.