Abstract

Abstract We compare the microlensing-based continuum emission region size measurements in a sample of 15 gravitationally lensed quasars with estimates of luminosity-based thin disk sizes to constrain the temperature profile of the quasar continuum accretion region. If we adopt the standard thin disk model, we find a significant discrepancy between sizes estimated using the luminosity and those measured by microlensing of log(r L /r μ ) = −0.57 ± 0.08 dex. If quasar continuum sources are simple, optically thick accretion disks with a generalized temperature profile T ( r ) ∝ r − β , the discrepancy between the microlensing measurements and the luminosity-based size estimates can be resolved by a temperature profile slope 0.37 < β < 0.56 at 1σ confidence. This is shallower than the standard thin disk model (β = 0.75) at 3σ significance. We consider alternate accretion disk models that could produce such a temperature profile and reproduce the empirical continuum size scaling with black hole mass, including disk winds or disks with nonblackbody atmospheres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.