Abstract

Next-generation non-volatile memory (NVM) technologies, such as phase-change memory and memristors, can enable computer systems infrastructure to continue keeping up with the voracious appetite of data-centric applications for large, cheap, and fast storage. Persistent memory has emerged as a promising approach to accessing emerging byte-addressable non-volatile memory through processor load/store instructions. Due to lack of commercially available NVM, system software researchers have mainly relied on emulation to model persistent memory performance. However, existing emulation approaches are either too simplistic, or too slow to emulate large-scale workloads, or require special hardware. To fill this gap and encourage wider adoption of persistent memory, we developed a performance emulator for persistent memory, called Quartz. Quartz enables an efficient emulation of a wide range of NVM latencies and bandwidth characteristics for performance evaluation of emerging byte-addressable NVMs and their impact on applications performance (without modifying or instrumenting their source code) by leveraging features available in commodity hardware. Our emulator is implemented on three latest Intel Xeon-based processor architectures: Sandy Bridge, Ivy Bridge, and Haswell. To assist researchers and engineers in evaluating design decisions with emerging NVMs, we extend Quartz for emulating the application execution on future systems with two types of memory: fast, regular volatile DRAM and slower persistent memory. We evaluate the effectiveness of our approach by using a set of specially designed memory-intensive benchmarks and real applications. The accuracy of the proposed approach is validated by running these programs both on our emulation platform and a multisocket (NUMA) machine that can support a range of memory latencies. We show that Quartz can emulate a range of performance characteristics with low overhead and good accuracy (with emulation errors 0.2% - 9%).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call