Abstract

AbstractCathodoluminescence (CL) images of quartz grains in the Appin Quartzite from the aureole of the Ballachulish Igneous Complex (Scotland) reveal a textural complexity that we interpret in the light of published models of the evolution of the contact aureole. Five distinct generations of quartz can be discriminated in CL. The oldest of these is a dark luminescing mottled quartz (Type 1 quartz) that occurs in the centres of pre‐existing grains, in samples collected from 210 m to 0.1 m from the contact. Dark mottled quartz is interpreted to be unrecrystallized material and has a regional metamorphic CL spectral signature. The onset of contact metamorphism resulted in grain growth visible in CL as a series of fine‐scale alternating bands of bright and dark luminescing material (Type 2 quartz), which we attribute to infiltration of repeated pulses of small amounts of H2O along grain boundaries. Close to the intrusion, a subgrain‐scale network of intragranular, bright luminescing features could have resulted from either intragranular microcrack‐controlled infiltration of H2O at high temperatures or intergranular cracking followed by grain growth (Type 3 quartz). Broad bands of bright material on grain boundaries in samples that are inferred to have undergone partial melting are interpreted as quartz crystallized from the melt phase (Type 4 quartz). The final stage in the textural development is marked by a series of aligned fractures, detected in CL by nonluminescing material (Type 5 quartz) and corresponding closely with trails of fluid inclusions. These fractures are interpreted as the pathways for late‐stage, low‐temperature, retrogressive fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.