Abstract
The Ordovician Wulalike marine siliceous shale is a notable hydrocarbon source rock in the Northwestern Ordos Basin. However, the causes of quartz and organic matter enrichment are still a mystery to experts. In this study, the organic geochemistry (maceral compositions, Rbitu, and TOC) and elemental geochemistry (major and trace elements) with mineralogy (XRD) and petrography were jointly acquired to systematically investigate the quartz origins and the paleoenvironment, and the main controlling factors for organic matter enrichment in the Wulalike shale. The results show that the organic matter is type I kerogen with low TOC concentrations (average 0.51%), and that the thermal evolution has reached mature and high mature stages (mean Requ is 1.08%). Three types of quartz are developed in Wulalike shale: biogenic quartz (average 63%) is the most dominant, followed by clastic quartz (average 31%) and microcrystalline quartz (average 6%). Babio and Ba/Al values indicate the low paleoproductivity, which is the primary cause for the low TOC found throughout the area. Redox indexes show the anoxic or dysoxic to oxic conditions from the bottom to the top of the section. Paleoclimate and paleowater depth proxies also changed from the bottom to the top. Various paleoenvironments and sedimentological evidence show that Wulalike shale went through the changing environments, and the early sedimentary environments were conducive to organic matter enrichment, leading to a relatively high TOC. The paleoproductivity and preservation conditions have an impact on organic matter enrichment. Based on the results of biogenic quartz distribution and sedimentary environments, it is considered that the bottom of the Wulalike Formation is the most favorable for shale gas exploration and development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.