Abstract

Pilot line manufactured custom quartz tuning forks (QTFs) with a resonance frequency of 28 kHz and a Q value of >30, 000 in a vacuum and ∼ 7500 in the air, were designed and produced for trace gas sensing based on quartz enhanced photoacoustic spectroscopy (QEPAS). The pilot line was able to produce hundreds of low-frequency custom QTFs with small frequency shift < 10 ppm, benefiting the detecting of molecules with slow vibrational-translational (V-T) relaxation rates. An Au film with a thickness of 600 nm were deposited on both sides of QTF to enhance the piezoelectric charge collection efficiency and reduce the environmental electromagnetic noise. The laser focus position and modulation depth were optimized. With an integration time of 84 s, a normalized noise equivalent absorption (NNEA) coefficient of 1.7 × 10−8 cm-1∙W∙Hz-1/2 was achieved which is ∼10 times higher than a commercially available QTF with a resonance frequency of 32 kHz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.