Abstract

Design and simple manufacturing technology of inexpensive quartz resonators for Coriolis vibratory gyroscopes (CVGs) of medium and low accuracy are proposed. The resonators are made from a piece of a commercially available fused quartz tube. The proposed technology makes it possible to produce such resonators without the use of precision machining, while the quality factor of such a resonator in the kilohertz frequency range reaches 1,000,000. Although this quality factor is much lower than that of precision quartz hemispherical resonators, it considerably exceeds the Q-factor of metal cylindrical resonators. In addition, the stability of the dissipative characteristics of the new resonators is also significantly increased. On the whole, this reduces the systematic drift of the device and its instability. These advantages of the new resonators allow us to significantly increase the accuracy of CVGs for inertial systems of medium and low accuracy without increasing their cost price. The report presents the designs and characteristics of such resonators, the methods of their balancing, as well as the possible constructive appearance of CVGs based on such resonators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call