Abstract

The immobilization of two 30-mer oligonucleotides, one biotinylated (biotin-DNA) and the other having a mercaptohexyl group at the 5'-phosphate end (BS1-SH), onto modified gold surfaces has been examined using a quartz crystal microbalance (QCM). Both single-layer and multilayer DNA films were prepared. The single-layer films of biotin-DNA were constructed by binding to a precursor layer of avidin, which had been attached to the QCM either covalently using a water-soluble carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) or via electrostatic interaction with poly(allylamine hydrochloride) (PAH). Single-layer films of BS1-SH were also formed on PAH via the electrostatic attraction between the amine groups on PAH and the negatively charged phosphate backbone of DNA. Multilayer films of DNA were fabricated by the successive deposition of avidin and poly(styrenesulfonate) (PSS), up to a total of nine avidin/PSS layers, followed by DNA adsorption. DNA immobilization and hybridization of the immobilized DNAs was monitored in situ from QCM frequency changes. Hybridization was induced by exposure of the DNA-containing films to complementary DNA in solution. Equal frequency changes were observed for the DNA immobilization and hybridization steps for the single-layer films, indicating a DNA probe-to-hybridized DNA target ratio of 1:1. The multilayer DNA films also exhibited DNA hybridization, with a greater quantity of DNA hybridized compared with the single-layer films. The multilayer films provide a novel means for the fabrication of DNA-based thin films with increased capacity for nucleic acid detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.