Abstract

We report the development of a novel quartz crystal microbalance immunosensor with the simultaneous measurement of resonance frequency and motional resistance for the detection of antibodies to double-stranded DNA (dsDNA). The immobilization of poly(L-lysine) and subsequent complexation with DNA resulted in formation of a sensitive dsDNA-containing nanofilm on the surface of a gold electrode. Atomic force microscopy has been applied for the characterization of a poly(L-lysine)-DNA film. After the blocking with bovine serum albumin, the immunosensor in flow-injection mode was used to detect the antibodies to dsDNA in purified protein solutions of antibodies to dsDNA and to single-stranded DNA, monoclonal human immunoglobulin G, DNase I and in blood serum of patients with bronchial asthma and systemic lupus erythematosus. Experimental results indicate high sensitivity and selectivity of the immunosensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.