Abstract

Gold nanowires with of designed length on a solid substrate have been proven as an efficiently immobilized affinity support for the detection of carcinoma antigen 125 (CA 125) in this study. The presence of gold nanowires provides a well-defined three-dimensional structure, and greatly amplifies the coverage of the anti-CA 125 protein on the probe surface. Moreover, the amount of anti-CA 125 varied with the change of the morphology of the probe, and achieved an optimal quartz crystal microbalance (QCM) response towards anti-CA 125 adsorption at the number of gold nanolayers of 5. The formed immune-probe exhibits good QCM responses for the detection of CA 125, and allows the detection of CA 125 at concentrations as low as 0.5 U ml(-1). The QCM immunosensor exhibited good precision, high sensitivity, acceptable stability, accuracy and reproducibility. The as-prepared immunosensors were used to analyze CA 125 in human serum specimens. Analytical results suggest that the developed immunoassay method is a promising alternative approach for detecting CA 125 in the clinical diagnosis. Compared with conventional ELISA, the proposed immunoassay system was simple and rapid without multiple labeling and separation steps. Importantly, the route provides an alternative approach to incorporate multiple gold nanolayers onto the solid matrix for biosensing applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call