Abstract

Quartz crystal microbalance with dissipation monitoring (QCM-D) has become a major tool enabling accurate investigation of the adsorption kinetics of nanometric objects such as DNA fragments, polypeptides, proteins, viruses, liposomes, polymer, and metal nanoparticles. However, in liquids, a quantitative analysis of the experimental results is often intricate because of the complex interplay of hydrodynamic and adhesion forces varying with the physicochemical properties of adsorbates and functionalized QCM-D sensors. In the present paper, we dissect the role of hydrodynamics for the analytically tractable case of stiff contact, whereas the adsorbed rigid particles oscillate with the resonator without rotation. Under the assumption of the low surface coverage, we theoretically study the excess shear force exerted on the resonator, which has two contributions: (i) the fluid-mediated force due to flow disturbance created by the particle and (ii) the force exerted on the particle by the fluid and transmitted to the sensor via contact. The theoretical analysis enables an accurate interpretation of the QCM-D impedance measurements. It is demonstrated inter alia that for particles of the size comparable with protein molecules, the hydrodynamic force dominates over the inertial force and that the apparent mass derived from QCM independently of the overtone is about 10 times the Sauerbrey (inertial) mass. The theoretical results show excellent agreement with the results of experiments and advanced numerical simulations for a wide range of particle sizes and oscillation frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.