Abstract

A matrix in highly complex samples can cause adverse effects on the trace analysis of targeted organic compounds. A suitable separation of the target analyte(s) and matrix before the instrumental analysis is often a vital step for which chromatographic cleanup methods remain one of the most frequently used strategies, particularly high-performance liquid chromatography (HPLC). The lack of a simple real-time detection technique that can quantify the entirety of the matrix during this step, especially with gradient solvents, renders optimization of the cleanup challenging. This paper, along with a companion one, explores the possibilities and limitations of quartz crystal microbalance (QCM) dry-mass sensing for quantifying complex organic matrices during gradient HPLC. To this end, this work coupled a QCM and a microfluidic spray dryer with a commercial HPLC system using a flow splitter and developed a calibration and data processing strategy. The system was characterized in terms of detection and quantification limits, with LOD = 4.3-15 mg/L and LOQ = 16-52 mg/L, respectively, for different eluent compositions. Validation of natural organic matter in an environmental sample against offline total organic carbon analysis confirmed the approach's feasibility, with an absolute recovery of 103 ± 10%. Our findings suggest that QCM dry-mass sensing could serve as a valuable tool for analysts routinely employing HPLC cleanup methods, offering potential benefits across various analytical fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call