Abstract

Inhalation of some respirable crystalline silica (MMAD < approx. 4 μm) leads to inflammatory and malignant diseases. Comprehensive physicochemical/biological data and suitable in vitro/in vivo methods may distinguish between more or less harmful quartz-varieties. Within the European Collective Research Project SILICERAM an in vitro screening battery was established to evaluate cytotoxicity (LDH-release, MTT-assay), genotoxicity (Comet-assay) and pro-inflammatory potential (PGE2-liberation, TNF-a mRNA expression) of 5 respirable quartz-containing dusts from ceramic plants: brickwork (BR: 7.8% quartz), tableware granulate/cast (TG/TC: 5.8%/3.1%), tiles (TI: 8.1%), refractory (RF: 3.7%). DQ12 (87% a-quartz) and Al2O3 were used as particulate positive and negative controls, respectively. Primary rat alveolar macrophages and the macrophage cell line NR8383 served as model systems. Aluminium lactate was used as inhibitor of biologically active silica, enabling differentiation of silica- and non-specific toxicity. At 200μg/cm2 (2h) the dusts did not alter significantly LDH-release (except TC), whereas the MTT-assay demonstrated the mainly quartz-independent rank order: DQ12>RF>TG>Ti>BR>TC>Al2O3. DNA-damage was maximal for BR and TI followed by DQ12>TG>TC>RF>Al2O3. All dusts induced PGE2-liberation (DQ12>BR>TC>TG>Ti>RF>Al2O3) at 50μg/cm2 (4h), but TNF-a mRNA (10μg/cm2, 24h) was only increased by DQ12, TG (quartz-dependently), and TC. In conclusion, these in vitro tests were an adequate approach to screen the toxic potential of quartz-containing ceramic dusts, but the quartz-content was too low to differentiate the various quartz-varieties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call