Abstract
The paper observes an almost Hermitian manifold as an example of a generalized Riemannian manifold and examines the application of a quarter-symmetric connection on the almost Hermitian manifold. The almost Hermitian manifold with quarter-symmetric connection preserving the generalized Riemannian metric is actually the Kähler manifold. Observing the six linearly independent curvature tensors with respect to the quarter-symmetric connection, we construct tensors that do not depend on the quarter-symmetric connection generator. One of them coincides with the Weyl projective curvature tensor of symmetric metric $g$. Also, we obtain the relations between the Weyl projective curvature tensor and the holomorphically projective curvature tensor. Moreover, we examine the properties of curvature tensors when some tensors are hybrid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.