Abstract

A dual-band high-temperature superconducting (HTS) bandpass filter (BPF) is proposed for wireless local area network applications. Using quarter-wavelength stepped-impedance resonators, the designed filter can be miniaturized and shows a dual-band response. The simulation results show the dual-band feature of two passbands at 2.4 and 5.2 GHz, each with a minimum in-band insertion loss of about 0.02 dB. The filter was made out of patterned double-sided deposited YBa <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> Cu <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">y</sub> (YBCO) films integrated with a gold-coated housing. The realized HTS BPF shows two passbands at 2.41 and 5.24 GHz with minimum insertion losses of 0.86 and 1.97 dB, respectively. The measured results show a good HTS BPF performance. Moreover, the temperature-dependent center frequencies can be well described by the modified two-fluid model based formulas, indicating that the frequency shift in HTS BPF is dominated by the temperature dependence of the magnetic penetration depth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call