Abstract

As urinary stone diseases are common in young adults and have a high recurrence rate, repetitive computed tomography (CT) scans would increase the radiation hazard. Therefore, CT radiation dose reduction is needed in the diagnosis of urinary stones. To prospectively evaluate the added value of adaptive statistical iterative reconstruction (ASIR) applied to half-dose (HDCT) and quarter regular dose non-enhanced CT (QDCT) for the detection of urinary stones. One hundred and twelve consecutive patients who presented with acute flank pain and had clinically suspected urinary stones were initially eligible. All patients underwent non-enhanced CT that consisted of HDCT (120 kVp, 100 mAs) and QDCT (120 kVp, 40 mAs). The images were reconstructed separately with a 50% ASIR blending ratio. Two radiologists independently performed a 2-week interval reading to detect urinary stones on a per stone basis (size ≥1 mm) from the QDCT images to the ASIR applied images. Two weeks later, the HDCT images were analyzed in the same manner. The CT image noise was measured for each image set. The sensitivity for urinary stone detection for each set was compared using the McNemar test. A total of 114 urinary stones were found in 48 patients (37 men, 11 women; mean age, 46 years; range, 19-71 years). After applying ASIR to the QDCT images, the sensitivity increased from 70% to 80% for reader 1 and from 69% to 82% for reader 2 (P = 0.001, respectively). However, in the HDCT images, the sensitivity was unchanged for both readers (reader 1, 87%; reader 2, 89%). The measured noise significantly decreased from 40.2 to 27.7 after applying ASIR to the QDCT images and from 25.1 to 17.6 after applying ASIR to the HDCT images (P = 0.001 for both). Although ASIR showed no added diagnostic value for HDCT images, it improved the sensitivity for the detection of urinary stones based on QDCT images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.