Abstract

Quark matter may appear due to a hadronic-quark transition in the core of a hybrid star. Quarkyonic matter is an approach in which both quarks and nucleons appear as quasiparticles in a crossover transition, and provides an explicit realization of early ideas concerning quark matter (e.g., the MIT bag model). This description has recently been employed by McLerran and Reddy to model chargeless (pure neutron) matter with an approach that has the virtue that the speed of sound rises quickly at a neutron-quark transition so as to satisfy observational constraints on the neutron star maximum mass ($\ensuremath{\gtrsim}2\text{ }\text{ }{M}_{\ensuremath{\bigodot}}$) and the radius of a $1.4\text{ }\text{ }{M}_{\ensuremath{\bigodot}}$ star (${R}_{1.4}\ensuremath{\lesssim}13.5\text{ }\text{ }\mathrm{km}$). Traditional models involving first-order transitions result in softer pressure-energy density relations that have difficulty satisfying these constraints except with very narrow choices of parameters. We propose a variation of quarkyonic matter involving protons and leptons whose energy can be explicitly minimized to achieve both chemical and beta equilibrium, which cannot be done in the chargeless formulation. Quarkyonic stellar models are able to satisfy observed mass and radius constraints with a wide range of model parameters, avoiding the obligatory fine-tuning of conventional hybrid star models, including requiring the transition density to be very close to the nuclear saturation density. Our formulation fits experimental and theoretical properties of the nuclear symmetry energy and pure neutron matter, and contains as few as three free parameters. This makes it an ideal tool for the study of high-density matter that is an efficient alternative to piecewise polytrope or spectral decomposition methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.