Abstract

We calculate the effect of variation in the light-current quark mass, mq, on standard big bang nucleosynthesis. A change in mq at during the era of nucleosynthesis affects nuclear reaction rates, and hence primordial abundances, via changes the binding energies of light nuclei. It is found that a relative variation of δmq/mq = 0.016 ± 0.005 provides better agreement between observed primordial abundances and those predicted by theory. This is largely due to resolution of the existing discrepancies for 7Li. However this method ignores possible changes in the position of resonances in nuclear reactions. The predicted 7Li abundance has a strong dependence on the cross-section of the resonant reactions 3He (d, p) 4He and t (d, n) 4He. We show that changes in mq at the time of BBN could shift the position of these resonances away from the Gamow window and lead to an increased production of 7Li, exacerbating the lithium problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.