Abstract

The analytic structure of the quark propagator in Minkowski space is more complex than in Euclidean space due to the possible existence of poles and branch cuts at timelike momenta. These singularities impose enormous complications on the numerical treatment of the nonperturbative Dyson–Schwinger equation for the quark propagator. Here we discuss a computational method that avoids most of these complications. The method makes use of the spectral representation of the propagator and of its inverse. The use of spectral functions allows one to handle in exact manner poles and branch cuts in momentum integrals. We obtain model-independent integral equations for the spectral functions and perform their renormalization by employing a momentum-subtraction scheme. We discuss an algorithm for solving numerically the integral equations and present explicit calculations in a schematic model for the quark-gluon scattering kernel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call