Abstract

In order to clarify the mechanism of quark confinement in the Yang-Mills theory with mass gap, we propose to investigate the massive Yang-Mills model, namely, Yang-Mills theory with “a gauge-invariant gluon mass term”, which is to be deduced from a specific gauge-scalar model with a single radially-fixed scalar field under a suitable constraint called the reduction condition. The gluon mass term simulates the dynamically generated mass to be extracted in the low-energy effective theory of the Yang-Mills theory and plays the role of a new probe to study the phase structure and confinement mechanism. In this talk, we first explain why such a gauge-scalar model is constructed without breaking the gauge symmetry through the gauge-independent description of the Brout-Englert-Higgs mechanism which does not rely on the spontaneous breaking of gauge symmetry. Then we discuss how the numerical simulations for the proposed massive Yang-Mills theory can be performed by taking into account the reduction condition in the complementary gauge-scalar model on a lattice. By using the reweighting method, we have investigated the effect of the gluon mass term to the Wilson loop (the static potential) and the dynamically generated mass. Moreover, we point out that the adjoint case would gives an alternative understanding for the physical meaning of the gauge-covariant decomposition for the Yang-Mills field known as the Cho-Duan-Ge-Faddeev-Niemi decomposition, while the fundamental case would give a novel decomposition which has been overlooked so far.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.