Abstract

A microscopic quark cluster model has been developed for six-quark states consisting of two s 3 quark clusters. The consequences of channel nonorthogonality and existence of Pauliforbidden states are investigated explicitly by solving the eigenvalue problem of the resonating group method (RGM) kernel. Since the RGM kernels needed are all available, the form of the six-quark states given in this paper is very suited to detailed RGM calculations. A rigorous treatment based on the R-matrix theory has been carried out to obtain NN phase shifts. The spin-spin term of the quark-quark interaction favors states of higher color-spin symmetry. This explains the larger change caused by the hidden color states in the 3S 1 phase shifts than in the 1S 0 phase shifts. Phase shifts calculated with inclusion of the delta and hidden color states are still too repulsive. It is pointed out that there arises a subtle problem in adding the one-boson exchange potential by hand to the RGM equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.