Abstract

Assuming that the leptons and quarks other than top are massless at tree level, we show that their masses may be induced by loops involving the top quark. As a result, the generic features of the fermion mass spectrum arise from combinations of loop factors. Explicitly, we construct a renormalizable model involving a few new particles, which leads to 1-loop bottom and tau masses, a 2-loop charm mass, 3-loop muon and strange masses, and 4-loop masses for first generation fermions. This realistic pattern of masses does not require any symmetry to differentiate the three generations of fermions. The new particles may produce observable effects in future experiments searching for μ → e conversion in nuclei, rare meson decays, and other processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.