Abstract

The quantum walk is a powerful tool to develop quantum algorithms, which usually are based on searching for a vertex in a graph with multiple marked vertices, Ambainis's quantum algorithm for solving the element distinctness problem being the most shining example. In this work, we address the problem of calculating analytical expressions of the time complexity of finding a marked vertex using quantum walk-based search algorithms with multiple marked vertices on arbitrary graphs, extending previous analytical methods based on Szegedy's quantum walk, which can be applied only to bipartite graphs. Two examples based on the coined quantum walk on two-dimensional lattices and hypercubes show the details of our method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.