Abstract

The quantum walk is a powerful tool to develop quantum algorithms, which usually are based on searching for a vertex in a graph with multiple marked vertices, Ambainis's quantum algorithm for solving the element distinctness problem being the most shining example. In this work, we address the problem of calculating analytical expressions of the time complexity of finding a marked vertex using quantum walk-based search algorithms with multiple marked vertices on arbitrary graphs, extending previous analytical methods based on Szegedy's quantum walk, which can be applied only to bipartite graphs. Two examples based on the coined quantum walk on two-dimensional lattices and hypercubes show the details of our method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call