Abstract

We apply the general quantum-statistical density-matrix formalism to an independent-electron gas within a space-dependent external electric potential, under equilibrium conditions. This problem is analogous to an ideal semiconductor homojunction diode. We solve the resulting equilibrium density-matrix equation using a perturbation theory. Next, we derive a first-order quantum correction to the classical Maxwell-Boltzmann density-potential formula. The correction appears as an added curvature term in external potential. It represents expected quantum-mechanical scattering against a spatially varying potential. Our results indicate that the commonly encountered thermodynamic or statistical-mechanical “law” of constant, equilibrium Fermi potential—with Fermi potential a parameter in the Maxwell-Boltzmann density-potential formula—is not fundamentally exact. In a general space-dependent potential, this “law,” we prove, is simply a classical approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call