Abstract

Nanocrystal quantum rods (QRs) have been identified as an important potential key to future photonic devices because of their unique two-photon (2P) excitation, large 2P absorption cross section and polarization sensitivity. 2P excitation in a conventional solid photosensitive medium has driven all-optical devices towards three-dimensional (3D) platform architectures such as 3D photonic crystals, optical circuits and optical memory. The development of a QR-sensitized medium should allow for a polarization-dependent change in refractive index. Such a localized polarization control inside the focus can confine the light not only in 3D but also in additional polarization domain. Here we report on the first 2P absorption excitation of QR-dispersed photopolymers and its application to the fabrication of polarization switched waveguides, multi-dimensional optical patterning and optical memory. This fabrication was achieved by a 2P excited energy transfer process between QRs and azo dyes which facilitated 3D localized polarization sensitivity resulting in the control of light in four dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.