Abstract

We present the first quantum-resolved angular distributions of ground-state neutral molecules which are products of electron stimulated desorption (ESD) and electron stimulated dissociation. Laser resonance-enhanced multiphoton ionization (REMPI) and two-dimensional imaging have been used to obtain angular distributions of NO desorbed by 350 eV electrons from O-precovered Pt(111). In a similar fashion, we have measured angular distributions for the NO product of NO 2 dissociation on clean and O-precovered Pt(111). In all cases, we observe narrow widths which are roughly the same as ion distributions determined by ESDIAD (ESD ion angular distributions). The angular distribution for NO ESD is sharply peaked (7° half-width at half maximum) along the surface normal for an O coverage (θ o) of 0.25 monolayer (ML). The angular distribution of the NO product from dissociation of side-bonded NO 2 on clean Pt(111) is unexpectedly peaked about the surface normal, and thus does not reflect dissociative forces parallel to the surface or the ∼ 25° off-normal ground-state bond direction. On O-precovered Pt(111), where NO 2 is N-bonded, ∼ 6° off-normal beams are observed. When the substrate is precovered with θ o > 0.5 ML, local disorder creates asymmetric site geometries which result in multiple peaked angular distributions with both normal and off-normal (∼9–10°) components; similar effects for NO ESD are observed. In all these studies, the NO angular distributions are invariant to rotational or vibrational state. This implies that the lateral translational degrees of freedom are essentially de-coupled from the internal modes of the molecule. The results are discussed in terms of desorption mechanisms, dissociative forces, site geometries, and disordered coadsorbate layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.