Abstract

We propose a new technique, called quantum optical coherence tomography (QOCT), for carrying out tomographic measurements with dispersion-cancelled resolution. The technique can also be used to extract the frequency-dependent refractive index of the medium. QOCT makes use of a two-photon interferometer in which a swept delay permits a coincidence interferogram to be traced. The technique bears a resemblance to classical optical coherence tomography (OCT). However, it makes use of a nonclassical entangled twin-photon light source that permits measurements to be made at depths greater than those accessible via OCT, which suffers from the deleterious effects of sample dispersion. Aside from the dispersion cancellation, QOCT offers higher sensitivity than OCT as well as an enhancement of resolution by a factor of 2 for the same source bandwidth. QOCT and OCT are compared using an idealized sample.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call