Abstract

Nonclassical correlations known as entanglement, quantum discord, quantum deficit, measurement‐induced disturbance, quantum Maxwell's demon, etc., may provide novel insights into quantum‐information processing, quantum‐thermodynamics processes, open‐system dynamics, quantum molecular dynamics, and general quantum chemistry. We study a new effect of quantumness of correlations accompanying collision of two distinguishable quantum systems A and B, the latter being part of a larger (interacting) system B + D. In contrast to the common assumption of a classical environment or “demon” D, the quantum case exhibits striking new qualitative features. Here, in the context of incoherent inelastic neutron scattering from H‐atoms which create molecular excitations (vibration, rotation, translation), we report theoretical and experimental evidence of a new phenomenon: a considerably reduced effective mass of H, or equivalently, an anomalous momentum‐transfer deficit in the neutron‐H collision. These findings contradict conventional theoretical expectations even qualitatively, but find a straightforward interpretation in the new theoretical frame under consideration. © 2015 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.