Abstract
The uncertainty principle is regarded as one of basics in quantum mechanics, which sets up a strict lower bound to quantify the prediction on the outcome concerning a set of incompatible measurements. In this paper, we investigate the dynamic behaviors of quantum-memory-assisted entropic uncertainty relation (EUR), and quantum coherence in structured reservoir. The results shown that the EUR is smallest in the vanishing limit of noise regardless of the forms of the initial sate we considered, while the coherence keeps the maximal value. During the time-evolution process, the uncertainty bound is lifted and the coherence damps monotonously. Subsequently, the EUR converges to an asymptotic nonzero constant in the long-time limit, yet the coherence asymptotically decays to zero. Moreover, the initial state purity plays a deterministic role in the initial amounts of EUR and coherence, i.e. the larger purity the less EUR and larger coherence. As an application, we employ the EUR to witness the coherence, and prove that the corresponding witnessing efficiencies are only depended on the version of coherence, while are insensitive to the reservoir.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.